CHROM. 18 715

Note

Rapid determination of arginine by high-performance liquid chromatography*

Z. HARDUF

Agricultural Research Organization, The Volcani Center, Department of Animal Nutrition, P.O. Box 6, Bet Dagan 50250 (Israel)

(First received January 30th, 1986; revised manuscript received April 8th, 1986)

During research in this laboratory, a need arose for the determination of arginine in plasma from dairy cows. Since arginine is the last peak in amino acid analysis, a shortened procedure was developed.

METHOD

Sample preparation

Plasma samples (1 ml) were deproteinized by the addition of 50 μ l of 100% (w/v) salicylsulphonic acid and centrifugation at 10 000 g for 10 min. A 50- μ l volume of the supernatant was injected into the column.

Chromatographic conditions

Details of the apparatus are given elsewhere¹. Column: 20 mm \times 2 mm (an AAA pre-column, Pickering, Mountain View, CA, U.S.A.), or an identical column packed in the laboratory with Dionex DC-4A or a similar resin. Eluent: 0.64 M Li⁺, pH 7.5 (Pickering). Column temperature: 65°C. Ninhydrin flow-rate: 0.2 ml/min. Reaction bath temperature: 135°C. Linear flow-rate gradient from 0.05 to 0.5 ml/min in 5 min, 0.5 ml/min from 5 to 7 min and 0.4 ml/min from 7 to 14 min. At 6 min, 0.3 M lithium hydroxide was pumped through the column for 1 min, followed by equilibration with pH 7.5 buffer for the remaining 7 min.

Detector settings were: signal A, 405 ± 5 nm; signal B, 570 ± 5 nm (both wavelengths of absorption maxima of Ruhemann purple¹). The two channels were used to confirm peak identification and quantity.

RESULTS

The arginine peak was eluted at 5.65 min (Fig. 1). The peak width at half height was about 15 s as compared with 75 s for a regular protein hydrolysate¹. It seems that, when using lithium buffer, the wavelength of 570 nm is preferable to that

^{*} Contribution from the Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel. No 1624-E, 1985 series.


```
ESTD
```

*	NAME	GR SI	TIME [min]	TYPE REF	E NA	AMOUNT NOMOLES 1	WIDTH [mim]	dTIME QU [min] [e	OTIENT mount]
1	ARGININE	A	5.642	TPB R		1.73020	0.270	0.007 A/B	0.982
MUL	FACTOR = 1								
EST) FOR SIGNAL	A							
#	NAME	GR	TIME [min]	HEIGHT [mAU]	ΤΥΡΕ	REF [N	AMOUNT	⊎IDTH [min]	SYM
1	ARGININE		5.642	54.877	TPB	R	1.73020	0.270	0.725
MUL	FACTOR = }								
EST) FOR SIGNAL	8				1			
#	NAME	GR	TIME [min]	HEIGHT [mAU]	TYPE	REF [N	AMOUNT IANOMOLES 1	WIDTH [min]	SYM
1	ARGININE		5.649	57.524	88	R	1.75240	0.310	0.622
MUL	FACTOR = 1								

Fig. 1. Chromatogram of venal plasma. Arginine level: 1.73 nmol.

of 405 nm, due to the straight baseline obtained in spite of the column flow-rate gradient (Fig. 1); a tangential-skim mode had to be used at 405 nm due to the nature of the baseline. The average amount of arginine determined from six consecutive injections of a calibration mixture containing 12.5 nmol arginine was 12.56 ± 0.26 nmol, *i.e.*, a relative standard deviation of 2.1% at both wavelengths. The response at both wavelengths was linear over the concentration range from 1.56 to 12.5 nmol (Fig. 2). Amounts of 1 nmol (equivalent to 30 μ g/ml) could easily be quantitated in blood plasma from the subabdominal vein of lactating cows.

Fig. 2. Plots of arginine peak height (mAu \approx milli absorption units) against amount (nmol): multilevel calibration was performed using single determinations of each standard concentration; the regression coefficients for signals A and B were 0.9992 and 0.9991, respectively.

REFERENCE

1 Z. Harduf, J. Chromatogr., 363 (1986) 261-266.